СЕМИНАР ПО МЕХАНИКЕ СПЛОШНЫХ СРЕД
Уважаемые коллеги!
В среду, 31 января 2018 г., в кинозале Института механики МГУ в 12.00 состоится очередное заседание семинара по механике сплошных сред под руководством А.Г. Куликовского, В.П. Карликова и О.Э. Мельника.
Бахолдин И.Б.
ИПМ им. М.В.Келдыша РАН, Москва
ИССЛЕДОВАНИЕ РЕШЕНИЙ ДЛЯ УРАВНЕНИЙ ТРУБЫ С УПРУГИМИ СТЕНКАМИ И РАЗРАБОТКА ЧИСЛЕННЫХ МЕТОДОВ ДЛЯ ДИСПЕРСИОННЫХ СИСТЕМ
Рассматриваются уравнения трубы с упругими стенками с контролируемым давлением, в случае заполнения жидкостью, в случае заполнения газом, с учетом и без учета жесткости стенок трубы на изгиб. Численно решается задача о распаде произвольного разрыва. Целью исследования является проверка возможности применения к данным моделям теории обратимых и слабодиссипативных разрывов. Применяются численные методы типа крест и с аппроксимацией временных производных по методу Рунге-Кутты. Для случая метода Рунге-Кутты второго порядка разрабатывается методика коррекции численной схемы путем добавления диссипативных членов с производными высокого порядка. Даются оценки необходимых значений коэффициентов при этих членах в общем случае. Методы Рунге-Кутты более высокого порядка коррекции не требуют. Сравнение результатов, полученных разными методами, показывает, что для некоторых начальных данных гладкого решения не существует и требуется вводить разрывы со структурами диссипативного типа. Это связано с тем, что в данной системе уравнений, для коротких волн дисперсия исчезает. Разработанная методика расчета позволяет проводить расчеты обратимых и диссипативных структур одновременно. Анализируется возможность применения полученных методик к системам с дисперсией в общем случае, в частности к системе уравнений электронной магнитной гидродинамики плазмы.